Selected Publications

AGE1.CR (duck cell line for animal and human vaccines)

Efficient and stable production of Modified Vaccinia Ankara virus in two-stage semi-continuous and in continuous stirred tank cultivation systems.

Tapia F, Jordan I, Genzel Y, Reichl U.

PLoS One. 2017 Aug 24;12(8):e0182553. doi: 10.1371/journal.pone.0182553. eCollection 2017. PMID: 28837572

Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines.

Ingo Jordan, Katrin John, Kristin Höwing, Verena Lohr, Zoltán Penzes, Erzsébet Gubucz-Sombor, Yan Fu, Peng Gao, Timm Harder, Zoltán Zádori & Volker Sandig

AVIAN PATHOLOGY, 2016 VOL. 45, NO. 2, 137–155 DOI: 10.1080/03079457.2016.1138280

Impaired antiviral response of adenovirus-transformed cell lines supports virus replication.

Bachmann M, Breitwieser T, Lipps C, Wirth D, Jordan I, Reichl U, Frensing T.J

Gen Virol. 2015 Dec 8. doi: 10.1099/jgv.0.000361. PubMed PMID: 26647282.

Purification of modified vaccinia virus Ankara from suspension cell culture.

Jordan I, Weimer D, Iarusso S, Bernhardt H, Lohr V, Sandig V.

2015. BMC Proceedings 9(Suppl 9):O13

Boosting Upstream, Downstream Processing: To Expedite Biomanufacturing, Deploy a New Genotype of Modified Vaccinia Virus Ankara.   

Lohr V, Sandig V, Jordan IGEN Genetic Engineering & Biotechnology News,

Jordan IGEN Genetic Engineering & Biotechnology News, 2014 Jul 1 (Vol. 34, No. 13).

The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis.

Lohr V, Hädicke O, Genzel Y, Jordan I, Büntemeyer H, Klamt S, Reichl U

BMC Biotechnol. 2014 Jul 30; 14(1):72. [Epub ahead of print] PubMed PMID: 25077436.

Propagation of viruses infecting waterfowl on continuous cell lines of Muscovy duck (Cairina moschata) origin.

Mészáros I, Tóth R, Bálint A, Dán A, Jordan I, Zádori Z

Avian Pathol. 2014 Jul 3; 1-28. [Epub ahead of print] PubMed PMID: 24992264.

Matrix and backstage: cellular substrates for viral vaccines

Jordan I, Sandig V

Viruses. 2014 Apr 11; 6(4):1672-700. doi: 10.3390/v6041672. PubMed PMID: 24732259; PubMed Central PMCID: PMC4014716.

High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells.

Genzel Y, Vogel T, Buck J, Behrendt I, Ramirez DV, Schiedner G, Jordan I, Reichl U

Vaccine. 2014 Feb 25; pii: S0264-410X(14)00189-3. doi: 10.1016/j.vaccine.2014.02.016. [Epub ahead of print] PubMed PMID: 24583003

Pharmaceutical Cell Lines for Biologics Production: Manipulation of cell growth, metabolism and product quality attributes

Von Horsten H, Winkler K, Sandig V

2014, Pages: 216-246, DOI (Chapter): https://doi.org/10.1515/9783110278965.216

Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara

Jordan I, Lohr V, Genzel Y, Reichl U, Sandig V

Microorganisms 2013, 1, 100–121.

Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles.

Frensing T, Heldt FS, Pflugmacher A, Behrendt I, Jordan I, Flockerzi D, Genzel Y, Reichl U

PLoS One. 2013 Sep 5; 8(9):e72288. doi: 10.1371/journal.pone.0072288. eCollection 2013. PubMed PMID: 24039749; PubMed Central PMCID: PMC3764112.

A novel genotype of MVA that efficiently replicates in single cell suspensions.

Jordan I, Sandig V

BMC Proceedings 2013, 7(Suppl 6):O1. doi:10.1186/1753-6561-7-S6-O1.

A genotype of modified vaccinia Ankara (MVA) that facilitates replication in suspension cultures in chemically defined medium.

Jordan I, Horn D, John K, Sandig V

Viruses. 2013 Jan 21; 5(1):321-39. doi: 10.3390/v5010321. PubMed PMID: 23337383; PubMed Central PMCID: PMC3564123

Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells.

Lohr V, Genzel Y, Jordan I, Katinger D, Mahr S, Sandig V, Reichl U

BMC Biotechnol. 2012 Oct 30; 12:79. doi: 10.1186/1472-6750-12-79. PubMed PMID: 23110398; PubMed Central PMCID: PMC3505166.

Production of a Viral-Vectored Vaccine Candidate Against Tuberculosis.

Jordan I, Woods N, Whale G, Sandig V

BioProcess International; Sep 2012

A chemically defined production process for highly attenuated poxviruses.

Jordan I, Northoff S, Thiele M, Hartmann S, Horn D, Höwing K, Bernhardt H, Oehmke S, von Horsten H, Rebeski D, Hinrichsen L, Zelnik V, Mueller W, Sandig V

Biologicals. 2011 Jan; 39(1): 50–8. Epub 2011 Jan 15.
PMID: 21237672

New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation.

Lohr V, Rath A, Genzel Y, Jordan I., Sandig V, Reichl U

Vaccine. 2009 Aug 6; 27(36): 4975-82. Epub 2009 Jun 14.
PMID: 19531390 [PubMed – indexed for MEDLINE]

An avian cell line designed for production of highly attenuated viruses.

Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig V

Vaccine 27(5): 748–56

Glycan analysis in cell culture-based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin.

Schwarzer J, Rapp E, Hennig R, Genzel Y, Jordan I, Sandig V, Reichl U

Vaccine. 2009 Jul 9; 27(32): 4325-36. Epub 2009 May 14.
PMID: 19410619 [PubMed – indexed for MEDLINE]

An avian cell line designed for production of highly attenuated viruses.

Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig V

Vaccine. 2009, Jan 29; 27(5): 748–56. Epub 2008 Dec 9.
PMID: 19071186 [PubMed – indexed for MEDLINE]

An Avian Designer Cell Line for Vaccine Manufacture.

Jordan, I, Vos, A, Neubert, A, Sandig, V

BioWorld Europe. 03–2007

AGE1.RO (fruit bat cell line in basic and applied virology)

CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection.

Caì Y, Yú SQ, Postnikova EN, Mazur S, Bernbaum JG, Burk R, Zhāng T, Radoshitzky SR, Müller MA, Jordan I, Bollinger L, Hensley LE, Jahrling PB, Kuhn JH

PLos One. 2014 Nov 19; 9(11):e112060. doi: 10.1371/journal.pone.0112060. eCollection 2014; PMID: 25409519

Influenza A Virus Polymerase Is a Site for Adaptive Changes During Experimental Evolution in Bat Cells.

Poole DS, Yú SN, Caì Y, Dinis JM, Müller MA, Jordan I, Friedrich TC, Kuhn JH, Mehle A

J Virol. 2014 Aug 20; pii: JVI.01857-14. [Epub ahead of print] PubMed PMID: 25142579

Establishment of fruit bat cells (Rousettus aegyptiacus) as a model system for the investigation of filoviral infection.

Krähling V, Dolnik O, Kolesnikova L, Schmidt-Chanasit J, Jordan I, Sandig V, Günther S, Becker S

PLoS Negl Trop Dis. 2010 Aug 24; 4(8): e802.
PMID: 20808767 [PubMed - indexed for MEDLINE] Free PMC Article

Cell lines from the Egyptian fruit bat are permissive for modified vaccinia Ankara.

Jordan I, Horn D, Oehmke S, Leendertz FH, Sandig V

Virus Res. 2009 Oct; 145(1): 54-62. Epub 2009 Jun 18.
PMID: 19540275 [PubMed - indexed for MEDLINE]

AGE1.HN human neuronal cell line

The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells.

Rath AG, Rehberg M, Janke R, Genzel, Y, Scholz S, Noll T, Rose T, Sandig V, Reichl U

J Biotechnol. 2014 May 20; 178:43-53. doi: 10.1016/j.jbiotec.2014.03.012. Epub 2014 Mar 18. PMID: 24657347

N-glycosylation and biological activity of recombinant human alpha1-antitrypsin expressed in a novel human neuronal cell line.

Blanchard V, Liu X, Eigel S, Kaup M, Rieck S, Janciauskiene S, Sandig V, Mark U, Walden P, Tauber R, Berger M

Biotechnology and Bioengineering, Volume 108, Issue 9, pages 2118-2128, September 2011

Quercetin treatment changes fluxes in the primary metabolism and increases culture longevity and recombinant α1-antitrypsin production in human AGE1.HN cells.

Niklas J, Nonnenmacher Y, Rose T, Sandig V, Heinzle E

Appl Microbiol Biotechnol 2011 (11) 3811-3814 DOI 10.1007/s00253-011-3811-4

Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis

Niklas J, Schräder E, Sandig V, Noll T, Heinzle E

Bioprocess Biosyst Eng. 2010 Dec 25. [Epub ahead of print]
PMID: 21188421 [PubMed - as supplied by publisher]

HuALN (The human artificial lymph node)

Towards a 21st-century roadmap for biomedical research and drug discovery: consensus report and recommendations.

Langley GR, Adcock IM, Busquet F, Crofton KM, Csernok E, Giese C et al.

Article in Drug discovery today · October 2016, DOI: 10.1016/j.drudis.2016.10.011

Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing.

Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR, Cirit M, Daneshian M, Fitzpatrick S, Frey O, Gaertner C, Giese C, Griffith L, Hartung T, Heringa MB, Hoeng J, de Jong WH, Kojima H, Kuehnl J, Luch A, Maschmeyer I, Sakharov D, Sips AJAM, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tralau T, Tsyb S, van de Stolpe A, Vandebriel R, Vulto P, Wang J, Wiest J, Rodenburg M, Roth A,

ALTEX. 2016; 33:272–321. doi: 10.14573/altex.1603161

Modeling Human Immunity In Vitro: Improving Artificial Lymph Node Physiology by Stromal Cells

Sardi M, Lubitz A, Giese C

Applied In Vitro Toxicology. September 2016 2(3): 143-150. doi:10.1089/aivt.2016.0004.

Human immunity in vitro - Solving immunogenicity and more.

Giese C, Marx U

ADDR 2014 Apr; 69-70:103-122

Crosstalk between immune cells and mesenchymal stromal cells in a 3D bioreactor system.

Seifert M, Lubitz A, Trommer J, Könnig D, Korus G, Marx U, Volk H D, Duda G, Kasper G, Lehmann K, Stolk M, Giese C

Int J Artif Organs 2012; 35: (11) 986-995

Engineering tissue alternatives to animals: applying tissue engineering to basic research and safety testing.

Holmes A, Brown R, Shakesheff K, Giese C

Regen. Med. 2010, 4(4), 579–592

Immunological substance testing on human lymphatic micro-organoids in vitro.

Giese C, Lubitz A, Demmler C, Reuschel J, Bergner K, Marx U

Journal of Biotechnology 2010, Volume 148, Issue 1, 1 July 2010, Pages 38–45

A Human Lymph Node In Vitro – Challenges and Progress

Giese C, Demmler CD, Ammer R, Hartmann S, Lubitz A, Miller L, Müller R and Marx U

Journal of Artificial Organs. 2006, 30(10):803–808

High Level Expression

Increasing antibody yield and modulating final product quality using the FreedomTM CHO-STM production platform.

Michelle Sabourin1*, Ying Huang1, Prasad Dhulipala3, Shannon Beatty1, Jian Liu1, Peter Slade, Shawn Barrett, Shue-Yuan Wang, Karsten Winkler, Susanne Seitz, Thomas Rose, Volker Sandig4 Peggy Lio, Steve Gorfien, Laurie Donahue-Hjelle, Graziella Piras

BMC Proceedings 2011, 5(Suppl 8):P102 http://www.biomedcentral.com/1753-6561/5/S8/P102

Alternative Strategies and New Cell Lines for High-level Production of Biopharmaceuticals

Rose T, Winkler K, Brundke, E, Jordan I, Sandig V,

In: Knäblein: Modern Biopharmaceuticals, Wiley-VCH. 2005. 761-778

Mammalian cells

Sandig V, Rose Th, Winkler K, Brecht R,

In: G. Gelissen: Production of recombinant proteins. Wiley-VCH. 2005. 233-252

Glycoengineering (for potency enhancement and immune modulation)

A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies.

Roy G, Martin T, Barnes A et al.

MAbs. 2018 Feb 22:1-15. doi: 10.1080/19420862.2018.1433975. [Epub ahead of print]

Engineering of CHO Cells for the Production of Recombinant Glycoprotein Vaccines with Xylosylated N-glycans.

Sandig G, von Horsten HH, Radke L, Blanchard V, Frohme M, Giese C, Sandig V, Hinderlich S

Bioengineering (Basel). 2017 Apr 28;4(2). pii: E38. doi: 10.3390/bioengineering4020038. PMID:28952517

Fucose-targeted glycoengineering of pharmaceutical cell lines.

Ogorek C, Jordan I, Sandig V, von Horsten H.H.

Methods Mol Biol. 2012; 907:507-17 PMID: 22907371

Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase.

von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig V

Glycobiology. 2010 Dec; 20 (12):1607-18. PMID: 20639190

Analytical development

Characterization of Recombinant Proteins (Chapter 9.)

C. Giese, H. von Horsten and S. Zietze:

DOI: 10.1002/9783527632909.ch9 in Kayser and Warzecha (Eds.) (2012): Pharmaceutical Biotechnology: Drug Discovery and Clinical Applications

Quantitative MALDI-TOF-MS Using Stable-isotope Labeling: Application to the Analysis of N-glycans of Recombinant α-1 Antitrypsin Produced Using Different Culture Parameters.

Blanchard V, Kaup M , Eigel S, Rieck S, Sandig V , Marx U , Tauber R, Berger M,

Journal of Carbohydrate Chemistry, 30:320–333, 2011 DOI: 10.1080/07328303.2011.605194

Quality for Biologics.

Zietze S, Riedel M,

Biopharm Knowledge Publishing. 2008

Standardization, evaluation and early-phase method validation of an analytical scheme for batch-consistency N-glycosylation analysis of recombinant produced glycoproteins.

Zietze S, Müller R. H, Brecht R,

European Journal of Pharmaceutics and Biopharmaceutics. 2008, 68: 818–827, DOI: 10.1016/j.ejpb.2007.08.015

Drug Testing In Vitro – Breakthroughs and Trends in Cell Culture Technology.

Marx and Sandig (eds.)

Wiley-VCH Verlag GmbH & Co. KgaA. 2007

Gene Therapy

Development and Assessment of Human Adenovirus Type 11 as a Gene Transfer Vector.

Stone D, Ni S, Li Z.Y, Gaggar A, diPaolo N, Feng Q, Sandig V, Lieber A,

Journal of Virology. 2005. April. 5090-5104, DOI: 10.1128/JVI.79.8.5090-5104.2005

Genome Size and Structure Determine Efficiency of Postinternalizytion Steps and Gene Transfer of Capsid-Modified Adenovirus Vectors in a Cell-Type-Specific Manner.

Shayakhmetov D.M, Li Z.Y, Gaggar A, Gharwan H, Ternovoi V, Sandig V, Lieber A,

Journal of Virology. 2004 Sept, 10009–10022, doi: 10.1128/JVI.78.18.10009-10022.2004

The complete nucleotide sequence, genome organization, and orign of human adenovirus type11.

Stone D, Furthmann A, Sandig V, Lieber A,

Virology. 2003 Apr 25. 309(1): 152–165, DOI: 10.1016/S0042-6822(02)00085-5

Various

State-of-the-Art and New Optionsto Assess T Cell  Activation by Skin Sensitizers: Cosmetics Europe Workshop

Van Fliet E, Kühnl J, Giese C et al.

ALTEX 35(2), 2018

Novel Bioreactors for Fragile Glycoproteins.

Langhammer S, Brecht R, Marx U,

GEN. 2007, January (Vol. 27, No. 1) 1: 34–35